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Reaction diffusion in heterogeneous binary 
systems 
Part 2 Growth of the chemical compound layers at the interface 
between two elementary substances." two compound layers 

V. I. DYBKOV 
Institut Problem Materialoznavstva, Kiev 252180, USSR 

A system of non-linear differential equations describing the growth kinetics of the two com- 
pound layers at the interface between two elements is proposed. A number of well-known 
experimental and theoretical relationships follows from this system in the limiting cases. 

1. I n t r o d u c t i o n  
The growth of two compound layers was theoretically 
treated, from a "diffusional" view-point, by Arkharov 
[1] Gurov et al. [2] Schr6der and Leute [3], Fromhold 
and Sato [4] and other investigators. They arrived at 
a conclusion that the thickness of each of the two 
layers, as well as their total thickness, should para- 
bolically increase with time. In general, this is far from 
being the case. The thickness-time relationship in the 
case of two compound layers is very complex (see, for 
example, [5, 6]) and only some portion of the curve is 
close to a parabola. Moreover, sometimes one of the 
layers only occurs after a considerable period of time 
while the other grows from the very beginning of the 
experiment. 

Here, the growth kinetics of two compound layers is 
treated on the basis of the results obtained in Part 1 
[7]. 

2. Basic ideas and equations 
2.1. Model 
A schematic diagram to illustrate the growth process 
is shown in Fig. 1. The elements A and B are considered 
to be mutually insoluble at the temperature under 
investigation. It is assumed that the compounds ApBq 
and At B~ have very narrow homogeneity ranges. 

The ApBq layer grows as the B atoms diffuse across 
its bulk towards interface 1 and react with the surface 
A atoms: 

qB + pA = ApBq (1) 

Again, its thickness increases as the A atoms diffuse 
towards interface 2 and react with A~B, to form the 
ApB q compound: 

(sp -- qr)A + qArBs = sApBq (2) 

The growth of the ArB s layer is due to the reactions 

(sp - qr)B + rApBq = pArBs (3) 

and 

rA + s B  -- ArBs (4) 

which takes place at interfaces 2 and 3, respectively. 
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It is seen that the compound ApB u is the product in 
Reactions 1 and 2 but at the same time it is the 
reactant in Reaction 3. The ArB s compound is the 
product in Reactions 3 and 4 and is the reactant in 
Reaction 2. Hence, the formation, say, of the ApBq 
layer may be imagined as the growth due to Reactions 
1 and 2 and the "dissolution" into the adjacent phase 
ArBs due to Reaction 3. Similarly, the ArB, layer 
grows as Reactions 3 and 4 proceed and "dissolves" 
into the ApBq layer in the course of Reaction 2. 

2.2. Analytical treatment 
During some small period of time, dt, the thickness of 
the ApBq and ArBs layers will change from x to 
x + dx and from y to y + dy, respectively. The 
thickness of the Ap Bq layer will increase by 

dx+ = dx,l + dXA2, (5) 

where dXBl is the increase in the layer thickness at 
interface 1 due to Reaction 1 and dxa2 is the increase 
in its thickness at interface 2 due to Reaction 2. The 
expressions for dxB~ and dXA2 can easily be found using 
the results of Part 1 (see Equations 11 and 17 to 19); 
thus 

k0Bl 
dxB1 = dt, (6) 

1 + (ko. , x /k~. , )  

where k0~l is the rate constant of the ApBq layer 
growth under conditions of reaction control and klBl 
is the rate constant of its growth under diffusion control 
conditions. The constant k~B~ is a function of the 
diffusion coefficient, DB(A~Bq), of B in ApBq and the 
boundary concentrations, CBI(ApBq) and CB2(ApBq) , of 
component B into the ApBq layer: 

DB(%.~)[c.2(a~B~)- CBI(ApBq)] (7) 

CSl(Apaq) 
klB 1 = 

Similarly, 

dXA2 

where 

klA 2 

k0a2 

1 + (koA2X/k,A2) 
dt (8) 

DA(ApBq)[CAI(ApBq)- CA2(ApBq) ] 
C A2(ApBq) 

(9) 
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Figure 1 Schematic diagram illustrating the growth 
of two compound layers at the interface between 
two elements. 
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DA(ApBq ) being the diffusion coefficient of A in Ap Bq, 

CAI(ApBq) and CA2(ApBq) the boundary concentrations of A 
into the ApBq layer at interfaces 1 and 2 respectively. 

During dt, the ArBs layer thickness will increase by 

dy+ = dym + dyA3 (10) 

where dyB2 is the increase in its thickness at interface 2 
due to Reaction 3 and dyA3 is the increase at interface 
3 due to Reaction 4. The expressions for dyB2 and dYA3 
are 

and 

koB2 
dyB2 = 1 + (komy/k)m) dt (11) 

where 

k0A3 
dyA3 = d t  (12) 

1 + (koA3y/klA3) 

DB(ArBs)[CB3(ArBs) - -  CB2(ArBs) ] 
k l B  2 = (13) 

CB2(ArBs) 

D A(ArBx) [ C A2(ArB,) - -  C A3(ArBs) ] 
klA 3 = (14) 

C A3( ArBs) 

D and c being the diffusion coefficients and the bound- 
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ary concentrations, respectively, of components A and 
B into the Ar B~ layer�9 

During the same time, dt, the thickness of the ApBq 
layer will decrease by d x  as a result of Reaction 3. 
This decrease can easily be found from Equation 3. 
Indeed, 

maeB q _ rMa.Bq (15) 
mAra s PMArB, 

where m is the mass and M the molecular mass of the 
compound. The mass is the product of the density, ~, 
and the volume which in turn is the product of the 
surface area and the thickness of the layer. Since the 
surface area is constant, 

QA,oBq d x  __ FMApBq 

PA,asdyB2 pMArB , 
(16) 

Hence, 

d x  = rg dyB2 (17) 
P 

where the ratio of the molar volume, V, of ApBq to 
that of ArB s is denoted by g, i.e. g = VApBq/VA~. 

By analogy, from Equation 2 one obtains 



dy_ = ----q dXA2 (18) 
sg 

The overall change in the Ap Bq layer thickness during 
dt is 

Similarly, 

dx = dxm + dxA2 - -  d x  (19) 

dy = dya2 4- dyA3 --  dy_ (20) 

Thus, a system of differential equations describing the 
growth kinetics of two compound layers between the 
elements A and B is 

dx 
dt 

k0al k0A2 + 
1 + (komx/k~,) 1 + (komx/kjA2) 

rg k0B 2 (21a) 
p 1 + (koB2y/km2) 

dy koB2 koA3 
dt l + (koB2y/k,B2) 1 + (koA3y/k~A3) 

q k0A2 
(21b) 

sg  1 q- (koa2x/klA2) 

The system of differential equations set out as 
Equations 21a and 21b permit some predictions to be 
made. It should be emphasized, however, that the 
approach to their solution should not be only math- 
ematical. One must also take into account, besides the 
initial conditions x = 0 and y = 0 at t --- 0, the 
existence of the critical thickness of the layers (see 
Equation 16 in Part 1 [7]) 

x(m _ kml (22) 
~/2 kom 

x(A~_ klm (23) 
I/2 k0A2 

y{B) kin2 (24) 
1/2 ~ k0B2 

.~(A) = klA3 (25) 
1/2 koA3 

which divide the x - t and y - t relationships into the 
reaction and diffusion controlled regions with regard 
to components A and B (see Section 2 in Part 1 [7]). 
Here, only some limiting cases of practical interest are 
treated. 

3. Initial stage of the growth  process 
3.1. Linear growth 
Initially, the thicknesses of the layers are small and 
therefore the conditions kom ~ kml/x, k0a2 '~ k~A2/X, 
koB 2 "~ k m z / y  and k0a 3 4 k~m/y are satisfied. Hence, 
the terms of the form kox/k~ and koy/k~ can be 
neglected in comparison with unity. In this case 
Equations 21a, b simplify to 

d_x = kom q- k0a2 - -  rg koB2 (26a) 
dt p 

dy = k0B2 4- k0A3 q d t  - -  ~g k0A2 (26b) 

If kom + koA 2 > (rg/p)koB 2 and koB 2 + koA 3 > 

(q/sg)koA 2 then dx/dt and dy/dt are positive and 
therefore both layers grow linearly with time. 

If kom + k0A2 = (rg/p)koB2 then dx/dt = 0. This 
means that the thickness of the ApBq layer remains 
constant since the rate of growth of this layer is equal 
to the rate of its "dissolution" into ArBs. Note that at 
the same time the ArB s layer continues to grow linearly. 

When the condition 

k0a I 4- k0a 2 < rg koB2 (27) 
P 

is satisfied then the ApBq layer cannot grow at all 
(dx/dt < 0) and therefore only the ArBs layer will 
grow between the A and B phases. If  the ApBq layer 
was initially present in a specimen its thickness would 
decrease and it may disappear completely. Of course, 
this does not mean that the ApB~ layer will never 
occur between the reacting phases. In general, the rate 
of the ApBq "dissolution" gradually decreases (see 
Equations 21a, b) and therefore the time will be 
achieved when dx/dt becomes positive. 

Similarly, the ArB s layer thickness remains constant 
or equals zero if k0B 2 4- k0A 3 = (q/sg)koA 2, If 

kou2 + k0A 3 < ~ k0A 2 (28) 
sg 

then the A,B, layer is absent between the reacting 
phases. 

Note that in the case under consideration both 
layers grow under reaction controlled regimes with 

..(A) ~(B) regard to both components as x ~ A1/2, x ~ -.~1/2, 
Y ~ Y~/2"(A) and Y ~ y~/2" (A) (see Equations 22 to 25 and 
Section 2 in Part 1 [7]). 

3.2. Non-linear-linear growth 
Thickening of the layers would result in a change of 
the regimes of their growth. Suppose that the regime 
of growth of  the Ap Bq layer with regard to component 

y(B) B is diffusion controlled as x > "m and consider the 
case where x > ..(m Assume that the regime of the .a,l[2. 

AeB q layer growth is reaction controlled with regard 
y ( A )  to component A so that x ~ ~J/2- As before, the 

regime of growth of the ArB, layer is regarded as being 
reaction controlled with regard to both components 

(h) ,,(m~ These conditions can be described ( Y  "~ Yl /2,Y 4~ .rj/2,,. 
as follows: k0m >> klui/x, k0a2 ~ klA2/X, koB2 ~ k182/Y 
and koA 3 <{ klA3/y. Therefore, Equations 21a and b 
become 

dx klB 1 
_ q- koA2 _ rg k0B2 (29a) 

dt x g 

dy q 
d--t = k~ 4- k0A3 --  - -  k~ (29b) sg 

From Equation 29b it follows that the A,B, layer 
grows linearly with time. The x- t  relationship is some- 
what more complicated (parabolic, asymptotic, etc, 
growth of the Ap Bv layer may be observed). 

4. The role of the critical thickness in 
determining the growth kinetics of 
the layers 

4.1. Departures of the layer thickness-time 
relationship 

Suppose that the regime of the ApBq layer growth 
become diffusion controlled not only with regard to 
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component B but also with regard to component 
~..(B) v'(A)'~ This case essentially differs A ( x  > ~)12, x > ~W2J" 

from the preceding one. Namely, when the regime of 
growth of the ApBq layer with regard to component A 
is diffusion controlled then the A~ B~ layer cannot grow 
at the expense of component A. This is due to the fact 

,.(A) all the A atoms passing across the that at x > --1/2 
ApBq layer are combined into the ApBq compound at 
interface 2 according to Reaction 2 (see Section 2 in 
Part 1 [7]). Moreover, the thicker the ApBq layer the 
greater is a deficit of A atoms in comparison with the 
reactivity of the A,B, layer surface towards these 
atoms. No A atom is therefore available for Reaction 4. 
Interface 2 or, more precisely, the surface of the A,B~ 
layer acts as an insurmountable barrier for A atoms. 
Hence, there is no source of A atoms for the A~B~ 
layer. At x > x~z ) this layer grows only at the expense 
of  component B. In such a case, the term 

1 + (komy/k,A3) 

in Equations 21a, b has no physical meaning and 
therefore it should be omitted whatever y. This results 
in a perceptible decrease of the rate of growth of the 

~(A) this layer grows at the A~B~ layer. Indeed, at x < ~/'2 
~(A) it expense of both components whereas at x > ~/2 

grows only at the expense of component B. A departure 
of the y-t  curve from its former course should 
therefore be observed as shown schematically in Fig. 2. 

4.2. "Paralinear'" stage of growth of the 
layers 

I f x  >> ~,/2,"(m x >> x{~2)and y • y{~then Equations 21a 
and b become 

dx kml -t- klA 2 rg 
- k 0 B 2  ( 3 0 a )  

dt x p 

dy q klA2 
dt k0B2 (30b) sg x 

Equation 30a is independent o f y  and therefore it can 
be solved separately. It is seen that the ApBq layer 
thickness tends to a limiting value defined by the 
equation 

i 
/ 

x(A| 
i lz . . . .  

0 Time 

Figure 2 A departure of the A,B, layer thickness-time relationship 
resulting from a change of the regime of growth of the ApBq layer. 
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(klm + klA2)p 
Xm,x = (31) 

rgkoB2 

while the ArB s growth kinetics at fairly large x becomes 
linear. Thus, 

dx _ klBi -Jr" klA2 rg koB2 (32a) 
dt x p 

dy 
dt k~ (32b) 

The equations of this type were first proposed to 
describe the growth kinetics of two compound layers, 
one of which is compact while the other is porous, by 
Loriers [8-10] (see also Kofstad [11]). In general, 
Equations 30a, b and 32a, b describe the so-called 
"paralinear" growth kinetics which is observed in 
those cases where the diffusion coefficients of  the 
elements in the layers are very different. "Paralinear" 
growth kinetics are usually observed during oxidation 
of metals and alloys when a continuous thermogravi- 
metric method is applied to control the run of the 
process [6, 11-16]. The name "paralinear growth" is 
due to the fact that some portion of the total specimen 
mass-time relationship is close to a parabola but then 
there is a transition to the linear-law kinetics. Indeed, 
from Equations 30a, b and 32a, b it follows that if 

klm + ktA2 >> rg k0B~ 
x p 

then the mass-time dependence is almost parabolic 
whereas the more long-time portion is almost linear, 
Fig. 3. 

4.3. Late s t age  of g r o w t h  of the  layers 
Eventually, the regime of growth of the ArB s layer 
becomes diffusional with regard to component B as well 

�9 (B) (Y > ~'1/2, see Equation 24). This change strongly 
affects the growth rate of the ApBq layer. Namely, at 

,,(m the ApB o layer has no source of B atoms and Y > 3,1/'2 
therefore its further growth proceeds only at the 

v'(A) and expense of component A. Thus, at x > ~1/'2 
, (m the growth of  both layers is due to Reactions Y > •i/2 

2 and 3 taking place at interface 2 whereas Reactions 1 
and 4 cannot proceed at all. In this case the terms 
k0m/[l + (komx/k~al)] and k0A3/[1 + (koA3y/k~g3)] in 
Equations 21 a, b have no physical meaning and there- 
fore they should be omitted. For the late diffusional 
region (x >> "~'l/2V'(A) and Y >> Yl/2J,"(B)a Equations 21a, b 
become 

d x  klA 2 rg kla 2 
- (33a) 

dt x p y 

dy klB2 q klA2 
- -  = (33b) 
dt y sg x 

Analogous systems of differential equations (differing 
only by coefficients) were obtained by Arkharov [1] 
Fromhold and Sato [4], Schr6der and Leute [3] and 
others. It should be noted that the solutions of these 
equations are often based on the assumption that the 
ratio of the rates of growth o f  the layers remains 
constant during the growth, i.e. 
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Figure 3 "Paralinear" growth kinetics: 1, triass of the ApBq layer; 2, 
mass of the ArB, layer. I, a portion of the total mass-time curve 
close to a parabola. II, a lineal portion. 

dx/dt 
- const. (34) 

dy/dt 

In general, however, this is not the case. The source of 
this erroneous assumption can easily be revealed using 
Equations 33a, b. Indeed, for the layers to grow, dx/dt 
and dy/dt must be positive. Hence, Equations 33a, b 
transform into a system of inequalities of the form 

kla2 rgkla2 
> 0 (35a) 

x py 

kla2 qklA2 
> 0 (35b) 

y sgx 

The inequalities should be satisfied simultaneously; 
thus 

q klA 2 X p klA 2 
- - - -  < - < - - - -  ( 3 6 )  

sg klB2 Y rg klB2 

It is seen, firstly, that the ratio of the thickness of the 
mpBq layer to the thickness of the ArB , layer depends 
upon: (a) the constants of diffusional growth; (b) the 
ratio of the molar volumes of the compounds; and (c) 
the stoichiometry of the compounds. Secondly, it is 
clear that the x/y ratio varies with time and therefore 
there is no evidence to suppose that it is constant. On 
the other hand, it is seen that the closer the compo- 
sitions of the Ap Bq and ArB s compounds the narrower 
is the range in which the x/y ratio may vary. For 
example, for compounds of the type AB and AB2 
Inequality 36 becomes 

klA 2 X klA 2 
- -  < - < - -  ( 3 7 )  

2gkl~z Y gkla2" 

This range is fairly wide in comparison with the exper- 
imental error of determination of the layer thickness, 
that usually being 10 to 30%. 

For compounds of the type AB 4 and AB5 this range 
is 

4klA 2 X klA 2 
5gkza-----~2 < - < - -  (38) Y gklB2 

From Inequality 38 it is seen that the change in the x/y 
ratio during the growth of the layers of these com- 
pounds is comparable with the experimental error of 
measuring the layer thickness. In this case from the 
experimental observations one may conclude that the 
x/y ratio is "constant". 

The law of growth of two compound layers in the 
late diffusional stage of the interaction can, at least in 
principle, be found by solving Equations 33a, b at the 
initial conditions x = x0, y -- Y0 at t = 0 (x 0 > 0, 
Y0 > 0) without any assumptions. Indeed, dividing, 
say, the second of these equations by the first yields an 
equation of the form dy/dx = f (x ,  y). Solving this 
equation, one obtains y as a function of x. Sub- 
stitution of this function into Equation 33a gives a 
differential equation of the form dx/dt = f(x).  On 
integrating this equation, one obtains x as a function 
of t. The y- t  relationship can then be obtained from 
Equation 33b. It should be emphasized that the prob- 
lem is so simple only in word, since each step produces 
very complex expressions and therefore it is hard, if 
not impossible, to represent the final result in the form 
of some simple analytical function. However, this 
difficulty is not an insurmountable obstacle for the use 
of these equations by experimentalists. Indeed, the 
values of (dx/dt),=,o and (dy/dt)t=,o can be found from 
experimental data (for example, by graphical differen- 
tiation of experimental x- t  and y- t  curves). Then, 
Equations 33a, b transform into a system of two 
equations with two unknown quantities, klB2 and k~m. 
The constants, k~B2 and k~m, found in such a way are 
characteristics of the Ap Bq and At B, layers, respectively, 
i.e. they are the same for any reaction couple where 
these layers occur. 

Note that from Equations 33a, b it follows that 
the pre-existing layers should not necessarily sim- 
ultaneously grow during subsequent annealing. 
If the initial thicknesses, x0 and Y0, are such that, 
say, (dx/dt),=o is negative and (dy/dt),= o is positive 
then the thickness of the ApBq layer will decrease 
while the thickness of the ArB, layer will increase 
during an isothermal anneal of the A-B couple 
unless the x/y ratio falls into the range defined 
by Inequality 36. After this, both layers will grow 
simultaneously. 

It should be noted that Equations 33a, b describe 
the so-called "postlinear" (see [11]) stage of the 
metal-gas interaction which follows the "paralinear" 
stage. 

5. Discussion 
In general, the relationships discussed above con- 
tinuously transform into each other. This results in a 
very complicated general relationship which cannot be 
described by some simple analytical equation. More- 
over, it is seen that there may be two more or less 
considerable departures of the curve describing the 
time dependence of the total thickness (or mass) of 
two compound layers as shown schematically in Fig. 4. 
One of these departures is due to a transition from 
reaction to diffusion controlled regime of growth of 
the Ap Bq layer with regard to component A and the 
other is due to a transition from reaction to diffusion 
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Figure 4 Departures of the thickness (mass) time relationships due 
to the existence of the critical thickness of  growing compound 
layers: 1, thickness of  the ApBq layer; 2, thickness of  the A~B~ layer; 
3, total thickness of the layers. 

controlled regime of growth of the A,B s layer with 
regard to component B. Such departures may be 
observed in those cases where the duration of the 
experiments is very long. It should be emphasized that 
the appearance of these departures is due only to the 
quantitative changes in thicknesses of the layers. For 
such departures to occur, no change in their number, 
compositions or structures is necessary. This is an 
example of the transformation of quantity into quality. 

It follows that no layer can grow between the Ap Bu 
and ArBs layers if these layers grow under diffusional 
regimes with regard to component A and B, respect- 
ively. In this case all the diffusing A atoms are spent 
on the growth of the ApBq layer (Reaction 2) whereas 
all the diffusing B atoms are spent on the growth of the 
ArB s layer (Reaction 3). 

Any compound lying between ApBq and ArBs acts 
only as the reactant in the reactions of formation of 
the ApBq and ArBs compounds. Therefore, the thick- 
ness of the layer of this compound will decrease until 
it disappears totally. Hence, the largest number of 
growing layers in the case under consideration is two. 
The layer of a new compound will grow only after the 
total depletion of one of the initial phases, i.e. the 
growth of compound layers is sequential and not 
simultaneous. This is in agreement with the exper- 
imental observations, the number of layers in the 
diffusion couples usually being far less than the number 
of chemical compounds in a given binary system. 

6 .  C o n c l u s i o n s  
Contrary to the "diffusional" theory which predicts a 
parabolic growth for two compound layers, the theory 

proposed here gives a more complicated relationship. 
This is in accordance with experiment. 

The neglect of a chemical reaction step is the main 
source of disagreement between the "diffusional" 
theory and the available experimental data. In fact, 
the fast chemical reactions taking place at the inter- 
faces between the reacting phases strongly affect the 
course of the layer growth. They are responsible for 
the appearance of the barriers to certain kinds of 
atoms at the critical thicknesses of the layers. This, in 
turn, results in a restriction of the number of compound 
layers growing simultaneously under diffusional 
regimes between the A and B phases. Hence, the rates 
of chemical transformations play an important, if not 
decisive, role in determining the direction of the 
growth process. This assertion is in sharp contradiction 
with the widespread opinion that the chemical trans- 
formations do not influence the growth kinetics except 
for some small initial period of the layer formation. 

In the limiting cases where the rates of chemical 
transformations are very high compared to the rates 
of diffusion of the reacting species the theory proposed 
here and the "diffusional" theory produce the same 
analytical equations describing the growth kinetics of 
two compound layers. 
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